CAVEL®

PRELIMINARIES

COMPANY PROFILE

Italiana Conduttori Srl has been producing CAVEL coaxial cables since 1968. During this time the company has achieved continuous growth and major recognition in both the Italian and international markets. The company plant and offices, occupying a surface area of 15,000 sqm, are situated in Gropello Cairoli, in the Province of Pavia, some 30 km along the A7 motorway from Milan en route to Genoa. The company has a production capacity over 100.000 km of cables a year.

PRODUCTS PROFILE

 $The \ costs \ of \ designing \ and \ building \ TV \ distribution \ networks \ necessitate$ products with better performance integrity and longer life.

CAVEL AN EU PRODUCT MADE IN ITALY

To meet these expectations, CAVEL coaxial cables have been designed to comply with new technological demands. More effective screening techniques have been developed and dimensions reduced, while at the same time enhancing mechanical strength and increasing durability. This has been made possible due to the use of nitrogen gas injected physical foam insulation technology, used for the production of coaxial cable dielectrics. Our service to installers has been improved by the introduction of CABLEBOX dispensers, offering environmental and health and safety benefits, as well as a wide range of connectors and tools.

A COMPANY THAT RESPECTS THE ENVIRONMENT

CAVEL is compliant with the EU RoHS Directive banning the use of certain hazardous chemical substances. In the past we used lead primarily in PVC sheath compounds as a thermal stabiliser. In accordance with the RoHS Directive, we discontinued the use of lead and its derivatives in all products from March 2005. In addition, Regulation 1907/2006 covering the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) came into force on 1 June 2007. Pursuant to the REACH Regulation, our company is categorised as a downstream "user of substances" and as a "producer of articles". For further information please visit our website and download our Declaration of Conformity to the RoHS Directive, as well as our Declaration in accordance with the REACH Regulation.

CAVEL WARRANTY

In recent decades, the updating of our coaxial cable design, the improved quality of our raw materials and the acquisition of modern production equipment have allowed us to guarantee all coaxial cables produced under the CAVEL brand for a period of 15 years. Both the Certificate and Conditions of Warranty can be downloaded from our website.

INDEX

an introduction p. 4-5

CPR TOP performant coaxes p. 6-7

Triple shield broadband coaxes p. 8-9

Double shield broadband coaxes RP Series p. 10-11

Double shield broadband coaxes DG Series p. 12-13

Distribution and trunk coaxes p. 14-15

Standard and Hybrid drop coaxes p. 16-17

SMATV twin and multicore coaxes p. 18-19

CABLEBOX and Packing system p. 20-21

Tools and Connectors p. 22

Legend and Disclaimet p. 23

An introduction to CPR (Construction Product Directive)

WHAT'S CPR? (EU 305/2011)

The management of CPR firstly has the noble aim to minimize the risks to people and property by reducing the danger of fires. It is the Construction Product Directive that has been applied in all member states of the European Community since July 2013. It concerns the "new era" of power, control and communication cables, both in copper and optical fiber, to be installed in construction works subject to fire requirements of reaction performance. The Directive EU 305/2011 is a Regulation introducing a common technical language and shared evaluation methods that define uniform Euro-Classes, related to cables performance in case of fire.

The conformity of the products with the Regulations is:

- standardized by Spec. EN 50575 in fire reaction requirements, test methods and cable evaluation;
- guaranteed by the DoP (Declaration of Performance) that every manufacturer must issue to the user and by the placement of CE marking on the products;
- specified by each Member State in the declination of Euro-classes according to the applications;
- implemented by designers, builders and users in the selection of appropriate products to be used in specific projects.

CHARACTERISTICS OF CABLES SUBJECT TO CPR

To meet the requirements of: safety in the event of fire, hygiene, health and the environment, the cables used in construction works must guarantee an adequate reaction to fire and a given release of

dangerous substances.

In fact, the safety of buildings in case of fire is implemented through:

- the limitation in the generation and propagation of fire and smoke,
- allowing the occupants the opportunity to leave the buildings in safe and good time.
- as well as to guarantee a high level of safety to rescue teams.

The Euro-Classification criteria, are expressed in a synthetic codification, which scans the characteristics of the cables according to the following parameters:

- Fire propagation classes, such as: B2ca, Cca, Dca, Eca, Fca;
- the opacity of the fumes produced, which varies in the parameters: from s1 to s3;
- the dripping of the incandescent particles that can propagate the fire, which varies: from d0 to d2;
- the acidity of the fumes, defining the danger to people and the corrosiveness for things and varies: from a1 to a3

In principle, the Euro-Classes adopted in Europe are those shown in the table below. Since each member State is given the faculty to classify and determinate the places where cables are installed according to their reaction to the fire, a more in-depth verification of the appropriate national documents is suggested, case by case.

Euro-Class	B2_{ca} s1a d1 a1	C _{ca} s1a d1 a1	C _{ca} s3 d1 a3	D _{ca} s1, d2, a1	E _{ca}	F _{ca}	
Risk of Fire	high	middle-high	middle	middle-low	low		
Performance of fire reaction	***	**	*				
Installation		in a bundle individually installed					
Installation Place subject to each	¥ Q 4					installation and use ONLY	
National specifications (acc. to DM139/15 in Italy)	under decision of the client or the designer	shopping centers hospitals cinemas schools offices > 25 people	large work large sto	cial estate offices shops orehouses ages	single residences small offices shops < 400 m ² small storehouses		
DoP Declaration of Performance		under decision manufacturer					
AVCP System Assessment Verification Constancy Performance system		4					

CERTIFICATION BODY AND FIRE REACTION REPORT

The Product Classification process starts with the choice of a Notified Body. These institutions are accredited to the European Commission as a Notified Body and they are included in the NANDO (New Approach Notified and Designated Organizational Information System). Cables provided to the Notified Body are submitted to the relevant tests and in case of positive feedback they issue the "Reaction to fire classification report for electric cable".

THE DOP AND THE UPDATING OF TECHNICAL DATA SHEET

Supported by the positive feedback of the tests and the release of the Classification Report, we are in turn authorized to draw up the corresponding DoP - Declaration of Performance, by which we assume the responsibility to declare the fire reaction Class. See the example by side. This document is public and it may be required at our company at any time. For service to anyone who needs it, this document is already available on the corporate website as well. It's easy to trace it by navigating into our web site up to the Data Sheet of each specific cable.

CE MARKING AND CABLE LABELLING

Conforming to instructions of CEI EN 50575 standards we apply to any single cable's packing unit one so called CE label, whose example is shown on the left side. On the contrary, the label shown on the right side appears on any outer cardboard box or wooden drum, where the Production Lot is also clearly visible.

CPR STATEMENTS ON CABLE'S JACKET

Together with the Euro-Class indication the Production Lot is also printed on the cable's outer jacket, whose code: dddyy (n), provides the following data:

ddd means the day of production (001-365)

the year of production уу

(n) the possible progressive number, if any

We remember that on our website www.cavel.com you can find deeper information and updates about the application of CPR statements in our production company as well as that you can download your own the relevant DoP of each cable, in addition to the relevant Data Sheets.

Euro -Class CPR Eu 305/11 Production Lot nr.

CPR TOP PERFORMANT COAXES - TRIPLE SHIELD BROADBAND COAXIAL CABLES

Application Standards	EN50117	2-4	2-4	works; 4K-UltraHD reso	2-4	2-3
CPR Class acc. to	UE 305/2011	B2ca s1a d1 a1	Cca s1a d1 a1	B2ca s1a d1 a1	Cca s1a d1 a1	B2ca s1a d1 a1
CAVEL Code		TS613B	TS613C	TS713B	TS713C	TS11B
RG Ref.		RG6	RG6	RG6+	RG6+	RG11
CONSTRUCTION DATA		1				
nner Conductor	Ømm	1,00		1,13		1,63
Dielectric	material Ø mm	Cu 4,60	10	Cu 4,80	10	Cu 7,20
Dietectric	material	PEG	1/8	PEG	Ha	PEG PEG
Screen	materiat	120	100	120	100	120
I. Film Foil Laminate	material	APAS	100	APAS	303	APAS
2. Braid	material	CuSn	100	CuSn	58	CuSn
Braid Optical Coverage	%	73	138	71	508	63
	Ø mm	5,17	44	5,37	49	7,85
3. Overlapped Film Foil	material	AP	9	AP	9	AP
Outer Sheath	Ø mm	6,90	61	7,00	310	10,30
vacci Sileatii	material	LSZH-FR+	LSZH-FR	LSZH-FR+	LSZH-FR	LSZH-FR+
	acoriut	202 1 11.	202	232 1 11		102
PHYSICAL DATA						
Copper Contents	kg/km	17,2		19,4		34,1
Cable Weigth	kg/km	54,0	51,7	52,7	50,6	100,9
Min. Bending Radius 1/n	mm	35 / 70		35 / 70		100
Max. Tensile Strength	N	120		150		300
ELECTRICAL DATA						
Impedance	Ohm	75±3		75±3		75±2
Capacitance	pF/m	54±2		52±2		52±2
Velocity Ratio	%	82		85		85
Attenuation (at 20°C)	70	02				
a 5 MHz	dB/100m	1,5		1,4		0,9
@ 10 MHz	dB/100m	2,2		1,9		1,3
a 30 MHz	dB/100m	3,4		3,0		2,0
a 50 MHz	dB/100m	4,4		3,8		2,6
a 200 MHz	dB/100m	8,5		7,5		5,0
@ 300 MHz	dB/100m	10,6		9,3		6,2
@ 470 MHz	dB/100m	13,4		11,7		7,9
© 862 MHz © 1000 MHz	dB/100m dB/100m	18,5 20,1		16,0 17,3		10,8 11,8
a 1750 MHz	dB/100m	27,3		23,4		16,1
@ 2150 MHz	dB/100m	30,6		26,1		18,2
@ 2400 MHz	dB/100m	32,6		27,8		19,4
@ 3000 MHz	dB/100m	37,1		31,5		25,4
Structural Return Loss (SRL)	ID	> 00		> 00		. 20
@ 5 - 470 MHz	dB	> 30 > 28		> 30 > 28		> 30 > 28
a 470 - 1000 MHz a 1000 - 2000 MHz	dB dB	> 28 > 26		> 28 > 26		> 28
@ 2000 - 3000 MHz	dB	> 22		> 22		> 20
Transfer Impedance (Zt)	Class	A++		A++		A+
@ 5 - 30 MHz	mΩ/m	< 0,9		< 0,9		< 2,5
Screening Attenuation (SA)	Class	Α+		A++		A++
Typical Value	dB	> 120		> 120		> 115
OC Resistance inner/outer	Ohm/km	22,5 / 10,4		18 / 10,0		8,5 / 7,5
Loop Resistance	Ohm/km	32,9		28,0		16,0
Sheath Insulation Voltage	kV	3		3		8
Max. Curret (I eff) STANDARD PACKING	А	6		8		16
Put-up	mode	reel		reel		drum
Jnit Length	m	100		100		500
Jnit Packing Content	m	500		500		500
Packing Pattern	mod.	R100M		R100M		PD500
Fits CABLEBOX	item	DS100		DS100		

CPR IN EUROPE

Many European Fire Regulations today can be covered by 4 CPR Classes of power, control and communication cables.

All of them under one community Directive 305/2011 and the right application in each country needs the detailed knowledge of the relevant national rules.

AND THE PROPERTY OF THE PARTY O

TRIPLE SHIELD BROADBAND COAXIAL CABLES

Application		Broadband CATV Network	s; Triple Play Network	s; 4K-UltraHD resolution; L	TE protection	
Standards	EN50117	2-4	2-4	2-5	2-4	2-4
Certification by dibkom			Nr. 00017			Nr. 00022
CPR Class acc. to	UE 305/2011	Dca s1, d2, a1	Eca	Fca	Eca	Eca
CAVEL Code		TS703JZH	TS703J	TS703JPE	TS61L	TS80L
RG Ref.		RG6+	137033	13/035FE	RG6EU	RG59EU
CONSTRUCTION DATA		NOO!			110020	1100720
Inner Conductor	Ø mm	1,13			1,00	0,80
	material	Cu			Cu	Cu
Dielectric	Ømm	4,80		4	4,80	3,50
	material	PEG	159	19	PEG	PEG
Screen		148	159	148	131	199
1. Film Foil Laminate	material	APAS	003	000	APAS	APA
2. Braid	material	CuSn	060	160	CuSn	CuSn
Braid Optical Coverage	% Ø mm	45	569	198	45	65
3. Overlapped Film Foil	material	5,37	17	19	5,37 AP	4,00 AP
Shorting Fold Film Foil (J)	material	APJ	11	107	AF	AF
Shorting rota rithir oit (5)	Illateriat	Als	-		9	-
Outer Sheath	Ø mm	6,90	1	2	6,60	5,20
	material	LSZH	PVC	PE 8	PVC	PVC 8
		20	(0)		9	99
PHYSICAL DATA		92	H	F4	5F	1
Copper Contents	kg/km	14,6		_	12,6	11,1
Cable Weigth	kg/km	46,3	43,9	38,9	40,3	28,4
Min. Bending Radius 1/n	mm	35 / 70		_	35 / 70	25 / 50
Max. Tensile Strength	N	150			120	90
ELECTRICAL DATA						
ELECTRICAL DATA Impedance	Ohm	75±3			75±3	75±3
Capacitance	pF/m	75±3 52±2			54±2	75±3 52±2
Velocity Ratio	%	85			82	85
Attenuation (at 20°C)	70	00			02	
a 5 MHz	dB/100m	1,6			2,0	2,1
a 10 MHz	dB/100m	2,3			2,3	2,9
a 30 MHz	dB/100m	3,2			3,5	4,5
a 50 MHz	dB/100m	4,1			4,6	5,7
a 200 MHz	dB/100m	8,0			8,6	11,1
a 300 MHz	dB/100m	9,8			10,8	13,7
a 470 MHz	dB/100m	12,5			13,6	17,4
@ 862 MHz	dB/100m	17,2			18,8	24
a 1000 MHz a 1750 MHz	dB/100m dB/100m	18,6 25,2			20,4 27,8	25,9
a 2150 MHz	dB/100m	28,1			31,1	35,1 39,5
@ 2400 MHz	dB/100m	29,7			32,4	42,2
@ 3000 MHz	dB/100m	33,7			37,3	48,0
	,	1.			,-	
Structural Return Loss (SRL)						
a 5 - 470 MHz	dB	> 30			> 30	> 30
a 470 - 1000 MHz	dB	> 28			> 28	> 28
ര 1000 - 2000 MHz	dB	> 26			> 26	> 26
a 2000 - 3000 MHz	dB	> 22			> 22	> 22
Transfer Impedance (Zt)	Class	A			A+	A++
@ 5 - 30 MHz	mΩ/m	< 2,5			< 2,5	< 0,9
Screening Attenuation (SA)	Class	A++			A++	A++
Typical Value	dB Ohm/km	> 120 18 / 14			> 120	> 125
DC Resistance inner/outer Loop Resistance	Ohm/km Ohm/km	32,0			22,5 / 14 36,5	35 / 13,5 48,5
Sheath Insulation Voltage	kV	32,0			3	2,5
Max. Curret (I eff)	A	8			6	4
an our of (1 cit)	, ,					7
STANDARD PACKING						
Put-up	mode	coil	reel		coil	coil
Unit Length	m	100-250-500	100-250		100-250-500	150
Unit Packing Content	m	500	600-500		500	900
Packing Pattern	mod.	R100M-R250L-R500XL	S100M-S250L		R100M-R250L-R500XL	S150M
	item	DS100-250 none	DS100-DS250		DS100-250 none	DS100

RP913B

TS11J

COAXIALS FOR TRIPLE PLAY DIGITAL NETWORKS TRIPLE SHIELD COAXES - TS Series

The market demand for products offering high screening performance for use in digital broadband communication systems is growing day by day. This is due on the one hand to the increasing number of transmission systems and, on the other hand, to the demand for digital TV programming such as PPV and VOD. Furthermore many operators now offer digital services for internet and digital telephony. Altogether these comprise the so-called Triple Play digital network.

This applies to distribution and reception systems in different fields, including terrestrial, satellite and cable broadband TV networks. All such systems require coaxial cables with more efficient screening features, especially in the so-called Return Path frequency range.

We have introduced two series of cables which both offer the highest Screening Attenuation of Class A++, according to EN50117 specifications.

The TS Series includes coaxials provided with the special J-Shorting- Fold Screen. This is an innovative Triple Shielded screen that affords excellent screening attenuation (SA) along the full frequency bandwidth range 30-3000 MHz.

It consists of:

- 1. An Al/Pet/Al foil film bonded to the dielectric (APAS);
- 2. One conventional braid of CuSn wires: cable broadband TV networks.
- 3. Another Al/Pet foil film (AP) over the braid, which is folded back over itself on the overlapping section.

The combination of these screening components guarantees the stability of the SA values, which are close to those provided by a real metal tube while keeping the cable's flexibility within acceptable limits for easy handling during installation.

DOUBLE SHIELD BROADBAND COAXIAL COAXES

Standards	EN50117	2-5	2-4	2-5	2-4	2-4	2-5	2-4
Certification by dibkom		Nr.00018				Nr. 00023		
CPR Class acc. to	UE 305/2011	Dca s2, d2, a1	Eca	Fca	Eca	Eca	Dca s2, d2, a1	Eca
CAVEL Code		RP913ZH	RP913B	RP913PE	RP61B	RP80B	RP705ZHB	RP705B
RG Ref.		RG6+	KI 713B	10 7 101 L	RG6EU	RG59EU	RG6+	IXI 703B
CONSTRUCTION DATA		1.001	-	-	NOOLO	100720	1,000	
nner Conductor	Ø mm	1,13			1,00	0,80	1,13	
illier colludctor	material	Cu			Cu	Cu	Cu	
Dielectric	Ømm	4,80	1-14	1-64	4,80	3,50	4,80	l l
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	material	PEG	[3]	150	PEG	PEG	PEG	1
Screen		131	131	131	131	13	131	
. Film Foil Laminate	material	AP M	738	738	APS M	AP 🕍	AP MI	
. Braid	material	CuSn	159	538	CuSn	CuSn	Al 💹	
Braid Optical Coverage	%	72	900	300	52	79	43	
	Ømm	5,30	108	58	5,37	4,05	5,38	
		131	UM.	131	1.35	100	132	
Outer Sheath	Ø mm	6,60			6,60	5,20	6,80	
	material	LSZH	PVC	PE E	PVC 🙍	PVC 🙇	LSZH 署	PVC
		35	8	22	4	9		
PHYSICAL DATA		94	96	95	&	98	785	
Copper Contents	kg/km	19,1	4	1	13,7	13,7	8,9	
Cable Weigth	kg/km	46,0	43,6	41,0	41,4	33,2	40,1	37,8
lin. Bending Radius 1/n	mm	35 / 70		-	35 / 70	25 / 50	35 / 70	
lax. Tensile Strength	N	150			150	90	150	
ELECTRICAL DATA							 	
mpedance	Ohm	75±3			75±3	75±3	75±3	
Capacitance	pF/m	52±2			52±2	52±2	52±2	
elocity Ratio	%	85			82	85	85	
ttonuation (at 2000)								
Attenuation (at 20°C)	dB/100m	1,4			1,7	1,9	1,5	
G 10 MHz		1,4			2,3	2,6	1,5	
	dB/100m	, ·			3,5	1		
a 30 MHz a 50 MHz	dB/100m dB/100m	3,0 4,0			4,5	4,2 5,5	3,1	
G 200 MHz	dB/100m	8,1			8,7	11,2	8,1	
a 300 MHz	dB/100m	9,9			10,7	13,9	10,0	
a 470 MHz	dB/100m dB/100m	12,6			13,6	17,5	12,6	
a 862 MHz	dB/100m	17,3			18,8	24,2	17,3	
@ 1000 MHz	dB/100m	18,7			20,3	26,2	18,7	
@ 1750 MHz	dB/100m	25,7			27,6	35,3	25,7	
@ 2150 MHz	dB/100m	28,8			30,9	39,6	28,9	
@ 2400 MHz	dB/100m	30,6			32,8	42,2	30,6	
@ 3000 MHz	dB/100m	34,1			37,2	48,0	35,0	
		,			,			
Structural Return Loss (SRL)								
@ 5 - 470 MHz	dB	> 30			> 30	> 30	> 30	
a 470 - 1000 MHz	dB	> 28			> 28	> 28	> 28	
@ 1000 - 2000 MHz	dB	> 26			> 26	> 26	> 26	
ര 2000 - 3000 MHz	dB	> 22			> 22	> 22	> 22	
ransfer Impedance (Zt)	Class	A+			А	A++	В	
@ 5 - 30 MHz	mΩ/m	< 2,5			< 5	< 0,9	< 15	
Screening Attenuation (SA)	Class	A++			A+	A++	A+	
ypical Value	dB	> 120			> 105	> 120	> 105	
OC Resistance inner/outer	0hm/km	18 / 10,7			22,5 / 13,2	35 / 11,8	18 / 22	
.oop Resistance	0hm/km	28,7			35,7	46,8	40,0	
heath Insulation Voltage	kV	3			3	2,5	3	
Max. Curret (I eff)	Α	8			6	4	8	
Standard Packing								
Out-up	mode	coil	reel		coil	coil reel	coil	reel
Jnit Length	m	100-250-500	100-250		100	150 150	100-250-500	100-250
Jnit Packing Content	m	500	600-500		500	750 900	500	600-500
Packing Pattern	mod.	R100M-R250L-R500XL	S100M-S250L		R100M	R150M S150M	R100M-R250L-R500XL	S100M-S250
its CABLEBOX	item	DS100-250 none	DS100-DS250		DS100	DS100 DS100	DS100-250 none	DS100-DS25

37,7

> 30 > 28 > 26 > 22 С < 20

> 105 22,5/22 44,5 3 8

coil

reel 100-500 100 500

600 R100M-R500XL S100M DS100 none DS100

COAXIALS FOR TRIPLE PLAY DIGITAL NETWORKS **DOUBLE SHIELD COAXES - RP Series**

The RP Series includes Double Shielded coaxials performing as well the highest possible screening efficiency along Return Path frequencies. This is due to the use of a thicker Al foil film over the dielectric.

DOUBLE SHIELD COAXIAL CABLES

Standards CRR Class acc. to US 3000 Cas Cas	Application		Satellite and Die	gital Terrestial reco	ection and distribut	tion; 4K-UltraHD re	esolution: LTE prote	ction	
CAVAL Code CAVAL CAVA		EN50117				The second secon			2-4
CONSTRUCTION DATA	CPR Class acc. to	UE 305/2011	Eca	Eca	Dca s2, d2, a1	Eca	Eca	Dca s2, d2, a1	Eca
March Mar	CAVEL Code		CW/16	DG70 C	DC007U	DC00 C	2vDC00 1 1	DC1127U	DG113
CONSTRUCTION DATA				DG/0-C		DG80-C	ZXDG60		פווטם
Insert Conductor			mini RG59	باريار	RG39EU	1,1	4	RUGEU	
Dietectric		Ø mm	0.41	0.70	0.80	10	11.1	1 13	
Dielectric d mm 100 270 3.50 PEG	illier colluctor					11.1	10.0		
Screen	Dielectric		1.0		1.24	MIT	MH		
APA	2.00000		199	1.000 1.000	17631	La	생님	1.298	
2. Braid material DuSin CuSin CuSin	Screen		X.	(5) (5)		(6) 14.4	5153	131	
## Processing Parallel Optical Coverage		material	APAS	APA TOTAL	APA	10 53	AS BS	APA 💹	1
FREZI Messenger 0 mm	2. Braid	material	CuSn	CuSn	CuSn	F1 30	818	CuSn	
PAZE Messenger	Braid Optical Coverage	%	70	73	65	10.63	22	72	
Physical DATA Compared Comp		Ø mm	2,47	3,40	4,00	117	77	5,30	4
Part				0 4	丙	8 4		0	
Section Sect	FeZn Messenger	Ø mm		68	28	0 8		3	
### Stripes colours	_			88		4 5	8	9	
### Stripes colours	Outer Sheath	Ø mm	3,60	4,30	5,00	P	11,0x5,0	6,60	6,60
Part		material	PVC	PVC	ZH	PVC	PVC	LSZH	PVC
Deprecionents	stripes colours			9			ă		
Copper Contents				P		H			
Cable Weight Min. Bending Radius 1/n N 15/30 20 / 40 25 / 50 90 150 Max. Tensile Strength N 120 80 80 90 150 Max. Tensile Strength N 120 80 80 90 150 Max. Tensile Strength N 15/30 85 85 85 Attenuation (at 20*C) 85 85 85 85 Attenuation (at 20*C) 85 85 85 Attenuation (at 20*C) 85 85 85 85 Attenuation (at 20*C) 85 85 85 85 85 Attenuation (at 20*C) 86 86 86 87 87 87 83 83 85 85 85 Attenuation (at 20*C) 86 86 86 87 87 87 83 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	PHYSICAL DATA				_		0.0	_	
Min. Bending Radius 1/n	Copper Contents	kg/km	4,3	10,0	11,1		22,3	19,2	
Min. Bending Radius 1/n	Cable Weigth	kg/km	14,7	20,8	26,6	25,7	55,9		43,4
ELECTRICAL DATA Impedance Ohm 75±3 75±3 75±3 75±3 75±3 75±3 75±3 75±3	Min. Bending Radius 1/n	mm	15 / 30	20 / 40	25 / 50			35 / 70	
Impedance	Max. Tensile Strength	N	120	80	90			150	
Impedance									
Capacitance Velocity Ratio PF/m 55±3 52±2 52±2 52±2 85 80 80 80 23 23 24 23	ELECTRICAL DATA								
Note	Impedance	0hm	75±3	75±3	75±3			75±3	
Attenuation (at 20°C) (a 5 MHz	Capacitance	pF/m	55±3	52±2	52±2			52±2	
6 5 MHz dB/100m 3,8 2,5 2,1 1,6 1,6 6 10 MHz dB/100m 5,4 3,5 3,0 2,3 3 6 30 MHz dB/100m 10,6 6,7 5,7 4,1 4,1 6 200 MHz dB/100m 21,2 13,0 11,0 8,0 8,0 6 300 MHz dB/100m 26,2 15,9 13,5 9,8 8,0 6 470 MHz dB/100m 33,0 20,2 16,8 12,4 <t< td=""><td>Velocity Ratio</td><td>%</td><td>82</td><td>85</td><td>85</td><td></td><td></td><td>85</td><td></td></t<>	Velocity Ratio	%	82	85	85			85	
6 5 MHz dB/100m 3,8 2,5 2,1 1,6 1,6 6 10 MHz dB/100m 5,4 3,5 3,0 2,3 3 6 30 MHz dB/100m 10,6 6,7 5,7 4,1 1 6 200 MHz dB/100m 21,2 13,0 11,0 8,0									
a 10 MHz dB/100m 5,4 3,5 3,0 2,3 a 30 MHz dB/100m 8,6 5,2 4,4 3,2 a 50 MHz dB/100m 10,6 6,7 5,7 4,1 a 200 MHz dB/100m 21,2 13,0 11,0 8,0 a 300 MHz dB/100m 26,2 15,9 13,5 9,8 a 470 MHz dB/100m 33,0 20,2 16,8 12,4 a 862 MHz dB/100m 45,1 27,8 23,0 17,1 a 1000 MHz dB/100m 45,1 27,8 23,0 17,1 a 1750 MHz dB/100m 65,4 40,3 33,5 24,9 a 2400 MHz dB/100m 73,0 45,0 37,4 27,9 a 250 MHz dB/100m 77,4 47,9 39,6 29,6 a 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) 8 22 28 28	Attenuation (at 20°C)								
a 30 MHz dB/100m 8,6 5,2 4,4 3,2 4,1 6 6,7 5,7 4,1 6 6,0 5,7 4,1 6 6,1 5,7 4,1 6 6,0 6 5,7 5,7 4,1 6 6 4,1 6 6 6 7,7 4,1 6 6 6 7,7 4,1 6 8,0 8,0 8 8,0 8 8,0 8 9,8 6 2,7 4,1 4,1 8,0 9,8 6 2,7 4,1	a 5 MHz	dB/100m	1 '						
a 50 MHz dB/100m 10,6 6,7 5,7 4,1 a 200 MHz dB/100m 21,2 13,0 11,0 8,0 a 300 MHz dB/100m 26,2 15,9 13,5 9,8 a 470 MHz dB/100m 33,0 20,2 16,8 12,4 a 82 MHz dB/100m 45,1 27,8 23,0 17,1 a 1000 MHz dB/100m 45,4 40,3 33,5 24,9 a 1750 MHz dB/100m 65,4 40,3 33,5 24,9 a 2400 MHz dB/100m 73,0 45,0 37,4 27,9 a 2400 MHz dB/100m 87,4 47,9 39,6 29,6 a 3000 MHz dB/100m 87,4 47,9 39,6 29,6 a 470 - 1000 MHz dB >29 >30 >30 >33,4 Structural Return Loss (SRL) dB >27 >28 >28 >28 >28 a 470 - 1000 MHz dB >27 >28		dB/100m	5,4	3,5					
a 200 MHz dB/100m 21,2 13,0 11,0 8,0 9,8 a 300 MHz dB/100m 26,2 15,9 13,5 9,8 12,4 a 470 MHz dB/100m 33,0 20,2 16,8 12,4 12,4 a 862 MHz dB/100m 45,1 27,8 23,0 17,1 17,1 a 1000 MHz dB/100m 45,1 27,8 23,0 17,1 18,5 a 1750 MHz dB/100m 65,4 40,3 33,5 24,9 24,9 a 2400 MHz dB/100m 73,0 45,0 37,4 22,9 24,9 27,9 24,9 27,9 28,6 29,6 29,6 29,6 29,6 29,6 28,0<			1						
a 300 MHz dB/100m 26,2 15,9 13,5 9,8 a 470 MHz dB/100m 33,0 20,2 16,8 12,4 a 862 MHz dB/100m 45,1 27,8 23,0 17,1 a 1000 MHz dB/100m 48,7 29,9 24,9 18,5 a 1750 MHz dB/100m 73,0 45,0 37,4 27,9 a 2400 MHz dB/100m 73,0 45,0 37,4 27,9 a 2400 MHz dB/100m 77,4 47,9 39,6 29,6 a 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) 8 8 29 > 30 > 30 > 30 > 30 a 470 - 1000 MHz dB > 27 > 28 > 28 > 28 > 28 > 28 28 28 26 26 26 26 26 26 22 22 22 22 22 22 22 22 25 25			1	1 '					
6 470 MHz dB/100m 33,0 20,2 16,8 12,4 12,4 6 862 MHz dB/100m 45,1 27,8 23,0 17,1 18,5 6 1750 MHz dB/100m 65,4 40,3 33,5 24,9 24,9 6 2150 MHz dB/100m 73,0 45,0 37,4 27,9 24,9 27,9 24,9 24,9 27,9 24,9 27,9 27,6 35,6 33,4 27,9 27,6 33,4 27,9 27,6 33,4 27,9 28 28 28 28 28		dB/100m	1						
G 862 MHz dB/100m 45,1 27,8 23,0 17,1 G 1000 MHz dB/100m 65,4 40,3 33,5 24,9 G 1750 MHz dB/100m 73,0 45,0 37,4 27,9 G 2400 MHz dB/100m 77,4 47,9 39,6 29,6 G 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss [SRL] Structural Re									
6 1000 MHz dB/100m 48,7 29,9 24,9 18,5 6 1750 MHz dB/100m 65,4 40,3 33,5 24,9 6 2150 MHz dB/100m 73,0 45,0 37,4 27,9 6 2400 MHz dB/100m 87,4 47,9 39,6 29,6 6 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) 6 5 - 470 MHz dB > 29 > 30 > 30 > 30 6 470 - 1000 MHz dB > 27 > 28 > 28 > 28 > 28 6 1000 - 2000 MHz dB > 22 > 26 > 26 > 26 > 26 20 > 22 > 26 20 > 22 22									
6 1750 MHz dB/100m 65,4 40,3 33,5 24,9 6 2150 MHz dB/100m 73,0 45,0 37,4 27,9 6 2400 MHz dB/100m 77,4 47,9 39,6 29,6 6 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) 6 5 - 470 MHz dB > 29 > 30 > 30 6 470 - 1000 MHz dB > 27 > 28 > 28 6 1000 - 2000 MHz dB > 22 > 26 > 26 6 2000 - 3000 MHz dB > 18 > 22 > 26 > 22 7 2 8 9 > 20 > 26 > 26 > 22 > 25 > 25									
G 2150 MHz dB/100m 73,0 45,0 37,4 27,9 G 2400 MHz dB/100m 77,4 47,9 39,6 29,6 G 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) G 5 - 470 MHz dB > 29 > 30 > 30 > 30 G 470 - 1000 MHz dB > 27 > 28 > 28 > 28 > 28 > 28 G 1000 - 2000 MHz dB > 22 > 26 > 26 > 26 > 26 22 > 25 > 25 > 25									
G 2400 MHz dB/100m 77,4 47,9 39,6 29,6 G 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) G 5 - 470 MHz dB > 29 > 30 > 30 > 30 G 470 - 1000 MHz dB > 27 > 28 > 28 > 28 > 28 G 1000 - 2000 MHz dB > 22 > 26 > 26 > 26 > 26 < 26									
G 3000 MHz dB/100m 87,4 53,7 44,8 33,4 Structural Return Loss (SRL) G 5 - 470 MHz dB > 29 > 30 > 30 G 470 - 1000 MHz dB > 27 > 28 > 28 G 1000 - 2000 MHz dB > 22 > 26 > 26 G 2000 - 3000 MHz dB > 18 > 22 > 22 Transfer Impedance (Zt) Class B B B G 5 - 30 MHz mΩ/m < 10									
Structural Return Loss (SRL)									
G 5 - 470 MHz dB > 29 > 30 > 30 > 30 > 28 > 28 > 28	a 3000 MHz	dB/100m	87,4	53,7	44,8			33,4	
G 5 - 470 MHz dB > 29 > 30 > 30 > 30 > 28 > 28 > 28	Charles I (Sec.)								
G 470 - 1000 MHz dB > 27 > 28 > 28 > 28 > 26 > 26 > 26 > 26 > 26 > 26 > 26 > 26 > 26 > 22 > 23 > 22		-ID		. 00	> 00			. 00	
G 1000 - 2000 MHz dB			1					l	
G 2000 - 3000 MHz dB > 18 > 22 > 22 > 22								1	
Class B B B B B B B B B			1						
Continue									
A									
Typical Value								1	
DC Resistance inner/outer									
Coop Resistance	**								
Sheath Insulation Voltage									
Max. Curret (I eff) A n.a. 3 4 4 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•								
Standard Packing Put-up mode reel coil coil reel									
Put-up mode reel coil reel Unit Length m 100 200 150 100-250 Unit Packing Content m 500 1200 900 600-500	Max. Curret (Leff)	А	11.d.	٥	4			O	
Put-up mode reel coil reel Unit Length m 100 200 150 100-250 Unit Packing Content m 500 1200 900 600-500	Standard Backins								
Unit Length m 100 200 150 100-250 Unit Packing Content m 500 1200 900 600-500		mada	rool	Coil	coil			rool	
Unit Packing Content m 500 1200 900 600-500	•		1					l .	
			1						
Packing Pattern mod. R100S S200M S150M S150M S100M-R250L				S200M	S150M				
Packing Pattern mod. R100S S200M S150M S150M S100M-R250L Fits CABLEBOX item - DS100 DS100 DS100	-		1/1002		1				

Californ	2-3	2-4	2-5	2-3	2-3	2-3	2-3
RoseU Ross Ros	Fca	Eca	Dca s2, d2, a1	Fca	Fca	Fca	Fca
Cu	DG113PEM			DG163		CATV11AP	
Cu		1,13	1,63		1,63		1,63
PEG						1.0	
APAS Cu/Pet Cu CuSn 785				133		n 33	
Table Carrest Carres	1 2	PEG	PEG	7-85	PEG	1 12	PEG
Table Carrest Carres	l Med	Cu/Pet	ΔΡΔς	\$10.00	ΔΡΔς 1894	8 856	ΔΡΔς
1x1,25	190	10,14	ACCOM	83980	0.028	8 1/25/07	1.5000
11.2x6,8 PE	1/89	F 10 TEA	M M S COR	9393		8L D003	
11,2x6,8 PE 10,10		5,30			7,85		8,01
11,2x6,8 PE A	1 1 05	t l		8	L L	F 0.00	L.
1,24,8	1x1,25	F	3	6	l l	/x0,80	H
PE PVC S	11,2x6,8	6,60		ľ	10,10	b	10,10
45.9				PE		18	
45.9	ľ		_	- 18			
45.9							
45.9		22.8	39.6		34.6	123.8	none
35 / 70	60,3			91,7		120,0	1
75±3				,			
52±2 52±2 52±2 53±2 85 85 85 85 1,4 1,1 1,1 1,1 2,0 1,5 1,5 1,5 2,9 2,2 2,2 2,2 3,8 2,8 2,8 2,8 7,7 5,6 5,6 5,6 9,4 6,9 6,9 6,9 12,1 8,8 8,8 8,8 16,7 11,9 11,9 12,3 18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 > 30 > 30 > 30 > 28 > 28 > 28 > 28 > 26 > 23 > 23 > 23 > 20 > 20 > 20 > 20 A A B B < 5		150	300		300		800
52±2 52±2 52±2 53±2 85 85 85 85 1,4 1,1 1,1 1,1 2,0 1,5 1,5 1,5 2,9 2,2 2,2 2,2 3,8 2,8 2,8 2,8 7,7 5,6 5,6 5,6 9,4 6,9 6,9 6,9 12,1 8,8 8,8 8,8 16,7 11,9 11,9 12,3 18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 > 30 > 30 > 30 > 28 > 28 > 28 > 28 > 26 > 23 > 23 > 23 > 20 > 20 > 20 > 20 A A B B < 5							
52±2 52±2 52±2 53±2 85 85 85 85 1,4 1,1 1,1 1,1 2,0 1,5 1,5 1,5 2,9 2,2 2,2 2,2 3,8 2,8 2,8 2,8 7,7 5,6 5,6 5,6 9,4 6,9 6,9 6,9 12,1 8,8 8,8 8,8 16,7 11,9 11,9 12,3 18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 > 30 > 30 > 30 > 28 > 28 > 28 > 28 > 26 > 23 > 23 > 23 > 20 > 20 > 20 > 20 A A B B < 5		75+2	75+2		752		75±2
85		1	1				1
2,0		!					
2,0							
2,0							
2,9 2,2 2,8 2,6 4,9 6,9 12,2 23 12,3 12,3 12,3 13,2 22 20,3 18,5 20,6 20,8 20,8 20,8 20,8 20,8 20,2 22,2 22,2 23 23 23 23 23 23 23 23 23 23 22 20 20 8 8<							1,1
3,8 2,8 2,8 2,8 7,7 5,6 5,6 5,6 9,4 6,9 6,9 6,9 12,1 8,8 8,8 8,8 16,7 11,9 11,9 12,3 18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 >30 >30 >30 >28 >28 >28 >28 >26 >23 >23 >23 >22 >20 >20 >20 A A B B 4 5 <8							2.2
7.7 5,6 5,6 6,9 6,9 6,7 6,9 6,7 6,9 6,7 6,7 6,7 6,7 6,7 6,7 6,7 12,8 8,8 8,8 8,8 11,9 12,3 11,9 12,3 13,2							
12,1 8,8 8,8 8,8 16,7 11,9 11,9 12,3 18,0 12,8 13,2 124,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 > 30 > 30 > 28 > 28 > 26 > 23 > 23 > 23 > 22 > 20 > 20 > 20 A A B B < 5							
16,7 11,9 11,9 12,3 18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 >30 >30 >30 >28 >28 >28 >28 >26 >23 >23 >23 >22 >20 >20 >20 A A B B <5							
18,0 12,8 12,8 13,2 24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 >30 >30 >30 >28 >28 >28 >28 >26 >23 >23 >23 >22 >20 >20 >20 A A B B B <5							
24,5 17,9 17,9 18,5 27,5 19,8 19,8 20,8 29,0 21,0 21,0 22,2 33,0 24,0 24,0 25,3 >30 > 30 > 30 > 30 > 28 > 28 > 28 > 28 > 26 > 23 > 23 > 23 > 22 > 20 > 20 > 20 A A B B < 5							
27,5			17,9				
33,0 24,0 24,0 25,3 25,3 25,3 25,3 25,3 25,3 25,3 25,3		27,5	19,8		19,8		20,8
> 30							
> 28 > 28 > 23 > 23 > 23 > 23 > 20		33,0	Z4,U		Z4,U		25,3
> 28 > 28 > 23 > 23 > 23 > 23 > 20							
> 26 > 23 > 20 > 20 A A B B < 5							
> 22 > 20 > 20 > 20 A A B B < 5							
A A A B B S S S S S S S S S S S S S S S							
< 5							
A+ A+ A A > 110 > 115 > 105 > 95 18 / 12,5 8,5 / 7,5 8,5 / 10 37,5 / 11,5 30,5 16,0 18,5 49,0 3,0 8,0 8,0 8,0 8 16 16 8 coil drum drum drum 100 500 500 500 600 500 500 500 S100M PD500 PD500 PD500					< 8		
18 / 12,5 8,5 / 7,5 8,5 / 10 37,5 / 11,5 30,5 16,0 18,5 49,0 3,0 8,0 8,0 8,0 8 16 16 8 coil drum drum drum 100 500 500 500 600 500 500 500 S100M PD500 PD500 PD500		A+	A+		Α		А
30,5							
3,0 8,0 8,0 8,0 8,0 8,0 8,0 8 8 16 16 16 8 coil drum drum drum 100 500 500 500 500 600 500 500 500 500 S100M PD500 PD500 PD500							
8 16 16 8 coil drum drum 100 500 500 600 500 500 S100M PD500 PD500 PD500							
coil drum drum drum 100 500 500 500 600 500 500 500 S100M PD500 PD500 PD500							
100 500 500 500 600 500 500 500 S100M PD500 PD500 PD500							
100 500 500 500 600 500 500 500 S100M PD500 PD500 PD500		.,					
600 500 500 500 S100M PD500 PD500 PD500							
S100M PD500 PD500 PD500							
			-				-

DISTRIBUTION AND TRUNK COAXES-Outdoor, Undergound and Hung-Up Installations

Application		Broadband CA	ΓV Networks: Tripl	e Plav Networks: 4	K-UltraHD resolut	ion; LTE protection		
Standards	EN50117	2-5	2-3	2-3	2-3			2-3
CPR Class acc. to	UE 305/2011	Fca	Fca	Fca	Dca s2, d2, a1	Fca	Fca	Fca
CAVEL code		11/50FC RG6EU	17/73FC RG11	TS20/91L	22/99ZH	22/99FC	22/99AP	TS22/99J
CONSTRUCTION DATA							do	-
Inner Conductor	Ø mm	1,13	1,63	2,00	2,20		110	2,20
	material	Cu	Cu	Cu	Cu			Cu
Dielectric	Ø mm	4,80	7,20	9,10	9,90	1.00	-	9,90
	material	PEG	PEG	PEG	PEG	200	2	PEG
Screen				VA1	1 3 3 3	1 300		6.8
1. Film Foil Laminate	material	Cu/Pet	Cu/Pet	APAS	Cu/Pet	2.3	0 87593	APAS
2. Braid	material	Cu 60	Cu	CuSn	Cu 55		X 17000a	CuSn
Braid Optical Coverage	% Ø mm	5,38	64 7,78	68 9,92	10,48	8,7000	X 3 3 3 3	10,84
3. Overlapped Film Foil	material	3,36	7,70	AP	10,40			10,04
3. Shorting Fold Film Foil -J	material			Α'				AP-J
Flooding Compound Filling	material	PJ	PJ		10	PJ T	PJ	
FeZn Messenger	size mm		13				7x0,80	8
	5.20	₹	18			a.		8
Outer Sheath	size mm	7,30	10,10	12,50	12,70	22	18,5x12,7	13,10
	material	PE	PE	PE	LSZH	PE	PE	PE
					_			
PHYSICAL DATA								
Copper Content	kg/km	22,4	40	54,9	59,6			61,9
Cable Weight	kg/km	49,5	88,2	133,7	149,3	130,4	174,3	135,4
Min. Bending Radius	mm	50	100	125	150			150
Max. Tensile Strength	N	200	300	600	600			600
Messenger Max. Tensile Strength	N				5.000			
ELECTRICAL DATA								
Impedance	Ohm	75±2	75±2	75±2	75±2			75±2
Capacitance	pF/m	52±2	52±2	52±2	52±2			52±2
Velocity ratio	%	85	85	85	85			85
Attenuation (at 20°C)								
at 5 MHz	dB/100m	1,5	1,1	1,0	0,8			0,8
at 10 MHz	dB/100m	2,1	1,5	1,3	1,1			1,1
at 30 MHz	dB/100m	2,9	1,9	1,8	1,5			1,5
at 50 MHz	dB/100m	3,8	2,5	2,3	2,0			2,0
at 200 MHz	dB/100m	7,9	5,3	4,6	4,0			4,0
at 300 MHz	dB/100m	9,7	6,5	5,7	4,9			4,9
at 470 MHz	dB/100m	12,0 16,8	8,3 11,5	7,1	6,4 9,1			6,4
at 1000 MHz	dB/100m dB/100m	17,9		10,9				9,1 9,8
at 1750 MHz	dB/100m	24,8	12,4 17,1	14,8	9,8 13,3			13,3
at 2150 MHz	dB/100m	27,3	19,2	16,5	14,9			14,9
at 2400 MHz	dB/100m	29,1	20,4	17,6	15,7			15,7
at 3000 MHz	dB/100m	33,0	23,3	19,8	18,3			18,3
at 5555 1-1112	db/ room	00,0	20,0	17,0	10,0			10,0
Structural Return Loss (SRL)								
at 5 - 470 MHz	dB	> 30	> 30	> 26	> 30			> 30
at 470 - 1000 MHz	dB	> 28	> 28	> 22	> 28			> 28
at 1000 - 2000 MHz	dB	> 26	> 23	> 22	> 23			> 23
at 2000 - 3000 MHz	dB	> 20	> 20	> 20	> 20			> 20
Transfer Impedance (Zt)	Class	В	В	A++	В			A+
at 5 - 30 MHz (TI)	mΩ/m	< 11	< 7	< 0,9	<8			< 2,5
Screening Attenuation (SA)	class	А	Α	A++	Α			A++
Typical Value	dB	> 100	> 95	> 135	> 105			> 120
DC Resistance: inner / outer	0hm/km	18 / 13,5	8,5 / 9,5	5,5 / 4	5 / 8,5			5 / 4,5
Loop Resistance	0hm/km	31,5	18,0	9,5	13,5			9,5
Sheath Insulation Voltage	kV	8	8	8	8			8
Max. Current (I eff)	A	8	16	21	21			21
Standard Packing		I						ļ.
Put-up	mode	drum	drum	drum	drum			drum
Unit Length	m	500	500	500	500			500
Unit Packing Content	m .	500	500	500	500			500
Packing Pattern	mod.	PD500	PD500	PD500	PD500		WD500	WD500

STANDARD DROP COAXES - SA Class B

Application	ENEO117	!	gital Terrestial rec _l		ribution	2-5	la r	2-4
Standards CPR Class acc. to	EN50117 UE 305/2011	2-4 Eca	2-4 Eca	2-4 Dca s2, d2, a1	Eca	Fca	2-5 Fca	Eca
	,							
CAVEL Code		SAT501 -N	SAT50M -N	SAT703ZH	SAT703B -N	SAT703-2G	17PAtC	KF114 -N -MA
RG Ref.		RG59EU	RG6EU	RG6+		RG6+	RG6+	RG6+
CONSTRUCTION DATA								
Inner Conductor	Ø mm	0,80	1,00	1,13		J.	1,13	1,13
B: 1	material	Cu	Cu	Cu		1.0	Cu	Cu
Dielectric	Ø mm material	PEG 3,50	PEG 4,75	PEG 4,80	538 138		PEG 4,80	PEG 4,80
Screen	materiat	0,50	4,75	4,00			4,00	4,00
1. Film Foil Laminate	material	APA	AP	APA	140	133	APA	Cu/Pet 🚟 🔭 📷
2. Braid	material	CuSn	CuSn	CuSn	148 187	(8)	CuSn	Cu A A
Braid Optical Coverage	%	47	38	45	110 130	1458	45	37
	Ø mm	4,00	5,22	5,30	R550 B050		5,30	5,30
Protection Jacket	Ø mm	820 820	BM 550	KNH	1623 1553	6,30 PE	199	
Outer Sheath	material Ø mm	5,00	6,60	6,60	000 000	7,60	6,80	6,60
vater offeath	material	PVC	PVC	LSZH	PVC	PVC	PE	PVC
Non Migrating film	material	483 483	ALL VALLE	-	State Perf	ME	TGEN	Commence of the Parish
External Sheath	Ø mm	v 7		T	ρq Z			E .
	material	8 1	Θ. S.	Y.	0 0	8	18	4 2
PHYSICAL DATA				co.	783		E.	# # Z
Copper Contents	kg/km	8,9	11,4	14,5		783	14,5	16,6
Cable Weigth	kg/km	24,2	38,7	42,0	39,5		36,0	40,4
Min. Bending Radius 1/n	mm	25/50	35/70	42,0 35/70 150		40/80	35/70	35/70
Max. Tensile Strength	N	90	150	150	- 115	co.	150	150
ELECTRICAL DATA								
Impedance	0hm	75±3	75±3 54±2	75±3			75±3	75±3
Capacitance Velocity Ratio	pF/m %	52±2 85	82	52±2 85			52±2 85	52±2 85
velocity Ratio	70		02				00	
Attenuation (at 20°C)								
a 5 MHz	dB/100m	2,3	2,0	1,6			1,6	1,4
a 10 MHz	dB/100m	2,8	2,8	2,1			2,1	2,0
@ 30 MHz	dB/100m	4,6	3,8	3,2			3,2	3,0
a 50 MHz a 200 MHz	dB/100m dB/100m	5,6 10.9	4,6 8,6	4,1 7,9			4,1 7,9	3,7 7,8
a 300 MHz	dB/100m	13,7	10,5	9,8			9,8	9,6
a 470 MHz	dB/100m	17,4	13,6	12,4			12,4	11,9
a 862 MHz	dB/100m	23,3	18,8	17,1			17,1	16,5
@ 1000 MHz	dB/100m	25,2	20,4	18,5			18,5	17,8
a 1750 MHz	dB/100m dB/100m	34,0 38,2	27,8 31,1	24,9 27,9			24,9 27,9	24,2 27,1
a 2400 MHz	dB/100m	40,4	33,3	29,6			29,6	28,8
@ 3000 MHz	dB/100m	44,2	37,7	33,4			33,4	32,6
Structural Return Loss (SRL)								
@ 5 - 470 MHz	dB	> 30	> 30	> 30			> 30	> 30
ര 470 - 1000 MHz ര 1000 - 2000 MHz	dB dB	> 28 > 26	> 28 > 26	> 28 > 26			> 28 > 26	> 28 > 26
@ 2000 - 3000 MHz	dB	> 22	> 22	> 22			> 22	> 22
Transfer Impedance (Zt)	Class	С	n.c.	С			С	С
@ 5 - 30 MHz	mΩ/m	< 23	< 85	< 23			< 27	< 22
Screening Attenuation (SA)	Class	В	В	В			В	В
Typical Value	dB	> 100	> 85	> 100			> 105	> 105
DC Resistance inner/outer Loop Resistance	Ohm/km Ohm/km	35 / 26 61	22,5 / 33 55,5	18 / 22 40			18 / 22 40	18 / 22 40
Sheath Insulation Voltage	kV	2,5	3	3			5	3
Max. Curret (I eff)	A	4	6	8			8	8
Standard Packing								
Put-up	mode	coil	coil coil	coil coil		reel	coil coil	coil coil
Unit Length Unit Packing Content	m m	150 900	100 250 600 500	100 250 600 500		200 400	100 250 600 500	100 250 600 500
Packing Pattern	mod.	S150M	S100M S250L	S100M S250L		R200L	S100M S250L	S100M S250L
Fits CABLEBOX	item	DS100	DS100 DS250	DS100 DS250		DS250	DS100 DS250	DS100 DS250
			•			t contract to the contract to	•	•

HYBRID COAXES - For special applications

SMATV MULTICORE COAXIALS - Multiswitch 1st IF Distribution

SMAIN MULTICU	IVE CO	ANIALS	- Muttis	SWILCH 15t	וו טואווטני	ation		
Application			SMATV Multis	witch 1st IF Distrib	oution of Satellite a	nd Digital Terresti	al reception and dist	ribution;
Standards		EN50117	2-4	esolution; LTE prot 2-4; 2-5	2-4; 2-5	2-4	2-4; 2-5	2-4; 2-5
CPR Class acc. to		UE 305/2011	Eca	Eca	Eca	Eca	Eca	Eca
Construction			2	F.,	0	2	E.,	9x
Construction			2x	5x	9x	2x	5x	7X
			2× 10 80 (5 2 3 1	5x 1/6 88 (9x DG 88 9I x6	2x 17 whtc (255)	5× 17 VAtC	9x 17 VAtC
CAVEL code			2xDG80	5xDG80M	9xDG80M	2x17VAtC	5x17VAtCM	9x17VAtCM
CONSTRUCTION DATA			ZXDOOO	OXBOOO!	7200011	ZXITTALO	OX 17 VACOIT	/XI/ VACOPI
Central Filler	A	material	-	white PVC	1	-	white PVC	1
		dia. mm	-	3,50	8,50	-	4,80	11,40
Single cable	В	code	DG80 (1)	DG80 (1)		17VAtC (2)	17VAtC (2)	
Single Cable's Sheath		material	-	white PVC with c	oloured stripes	-	white PVC with colo	ured stripes
Spirally Wrapped Film	С	dia. mm material	-	5,00 Pet		_	6,80 Pet	
Outer Sheath	E	material	white PVC	black LSZH		white PVC	black LSZH	
Inner Diameter	D1	mm	-	13,60	18,55	-	18,45	24,85
Outer Diameter	D2	mm	5x11,00	15,00	19,80	6,8x14,6	20,00	26,20
PHYSICAL DATA	1							
Copper Content		kg/km	22,3	57,4	101,7	28,9	72,5	133,6
Cable Weight		kg/km	56,3	216,2	364,2	81,7	360,0	670,0
Min. Bending Radius 1/n		mm	25/50	75/150	100/200	35/70	100/200	130/260
Max. Tensile Strength		N	180	800	1.400	300	800	1.400
Standard Packing								
Put-up		mode	reel	drum	drum	reel	drum	drum
Unit Length		m	100	100	100	100	100	50 100
Unit Length Weight		kg	6,3	26,6	36,4	8,8	41,0	40,5 74,7
Unit Packing Content		m	200	100	100	200	100	50 100
Packing Pattern		mod.	R100L	PD 100	PD 100	R100L	PD100	PD50 PD100
Fits CABLEBOX		item	DS250	-	-	DS250	-	-
(1) single cable's data at page (2) single cable's data at page			B \	A B C E	A B C E	B \	A B C E	A B C E

Both single and community satellite reception systems are often provided with a dual-feed parabolic antenna, i.e. where the satellite dish is provided with two LNBs, suitable for receiving signals from two different satellites or groups of satellites. In this case the drop line requires two coaxial cables, one for each LNB. Furthermore, the multiswitch distribution system makes it possible to independently distribute, among all users in the same building, a wide range of both satellite and terrestrial TV signals. For this reason the need for the so-called "light cabling system" is fulfilled by the use of multicore coaxials. Due to this technology the signals distribution requires:

- 4 coaxials for the satellite distribution and 1 coaxial for the terrestrial distribution, where the dish is provided with 1 converter.
- 2 groups of 4 coaxials for the satellite distribution and 1 coaxial for the terrestrial if the dish is provided with 2 LNBs.

We designed the twin and multicore coaxials shown here with the aim of offering the easiest solutions to professional installers. The use of these cables allows installers to save a lot of time when laying the distribution network.

cable 2x - 2 coaxials for dual feed parabolic antenna

cable 5x - 4 coaxials for 1 satellite drop line +1 coaxial for the terrestrial drop line

cable 9x - 4+4 coaxials for 2 satellite drop lines +1 coaxials for the terrestrial drop line

Twin cables

Both 2xDG80 and 2x17VAtC have just one of the cables printed on the outer sheath; this facilitates the connection of remote poles.

Colour Coding of Multicore Coaxial Cables

Each single cable in the bundle has two coloured stripes on the outer sheath, except for the white sheathed cable in the core of the bundle. This makes it easier to identify the cables and insert further remote poles. Furthermore, we have adopted the colour coding system already used by several European manufactures of active and passive components and equipment designed for multiswitch distribution. By convention the following functions have been assigned to this colour coding system.

Colour Function

Red High Band Vertical Yellow High Band Horizontal

White Terrestrial

Green Low Band Horizontal Rlack Low Band Vertical

Multicore coax with multipurpose outer jacket "M"

Initially, these cables were made with a common hard PE jacket, the stiffness of which made their installation quite difficult, if not impossible.

With the aim of making it easier to install these cables in both outdoor and underground applications, they have been provided with a flexible black EVA based outer sheath compound. The M suffix in the code identifies these versions, which entered in production at the beginning of 2010. This jacket is not only flame retardant but also zero-halogen (halogen-free), therefore it is fire-safe and suitable for indoor applications. Outdoor installations are also possible due to the compound's carbon black content and resistance to UV rays. For underground applications we recommend installation in pipes and ducts.

THE PAST old pack solution

...of just 1 pallet with 12 km of cable, WHAT DO YOU DO WITH: 48 dirty wooden drums or 120 useless plastic reels? THIS IS A WASTE DISPOSAL PROBLEM!

CABLEBOX

The environmentally friendly standard packing

Until recently, coils in a box or non-returnable cardboard and plastic reels were the most popular means of packaging TV coaxial cables. In spite of some inconveniences, these packages were accepted as the norm. Today, due to environmental studies and concerns, the concept of recycling has become a paramount issue, prompting CAVEL to develop a total solution in terms of EFFICIENCY, ECONOMY and ECOLOGY.

This has led to the introduction of a revolutionary product - the CABLEBOX dispenser - a design based on the concepts of REDUCTION and REUTILISATION.

The CABLEBOX dispenser is made of a stand containing one reel, which can be easily opened into two parts. These pieces, made of a shock resistant, very strong plastic material, form a cable dispenser with a very long life expectancy. The "refill" is represented by the coil of coaxial cable supplied by CAVEL

The dispensers are available in two sizes, suitable for either the 100 or 250 metre coil of cable. They can be carried and are also provided with a shoulder strap. This is a safety feature that enables the installer to move with both hands free.

The cable will always unroll perfectly without assuming a "spiral shape", an annoying drawback of box dispensers that makes installation in ducts very difficult. This is most useful when installing a bundle of cables together in a conduit. Rewinding excess cable back into the dispenser is very straightforward due to the access through the centre hole.

The sheath of all CAVEL cables supplied in shrinkpack form is provided with a decreasing meter marking, allowing the installer to check the length of a run or drop against the remaining contents of the dispenser. With the CABLEBOX dispenser packing system, there is no reel disposal to consider, only a small piece of shrinkwrap.

Supplying installers with CABLEBOX dispensers offers the following advantages:

- easier installation
- savings on cost and effort opportunity to avoid environmental problems
- improved safety.

THE PRESENT new smart pack solution

100 m SHRUNK COIL

of 1 pallet with14,4 km cable, YOU WASTE JUST FEW hg OF PAPER AND PLASTIC.

THIS IS A TOTAL SOLUTION!

STANDARD PACKING SYSTEM

mod. S100M 6x100m shrunk coils in box = 600m mod. S150M

6x150m shrunk coils in box = 900m

mod. S200M 6x200m shrunk coils in box = 1.200m

fit CABLEBOX DS100

mod. S100L 2x100m shrunk coils in box = 200mmod. S150L

2x150m shrunk coils in box = 300m

fit CABLEBOX DS 250

mod. S250L 2x250m shrunk coils in box = 500mmod. S400L 2x400m shrunk coils in box = 800m

mod. R100S

5x100m plastic reels in box = 500m

mod. R100M 5x100m plastic reels in box = 500m

fits CABLEBOX DS 100

mod. R100L 2x100m plastic reels in box = 200mmod. R150L

2x150m plastic reels in box = 300m

mod. R200L

fit CABLEBOX DS 250

2x200m plastic reels in box = 400mmod. R250L 2x250m plastic reels in box = 500m

mod. R500XL 1x500m plastic reels in box = 500m

mod. PD Plywood drums on pallet

CAVEL on the web!

A Special WEB Utility to research Tools and Connectors

The new cavel.com web site is first and foremost realized with a search engine by code, or by type of product. Then, once you have landed on the cable specs. card you are interested in, you can move on to it using a particular configuration of 5 menus under the card, to access many useful details, dedicated to the accessories of the cable in question, such as:

- the standard types of Packing available and the corresponding item number
- the compatible Stripper
- the wide range of Connectors, subdivided into sub-menus for indoor and outdoor installation and both with an automatic link to the appropriate crimp or compression tool (Pliers), just in case it is necessary for the use of the connector in question
- the Adapters
- some other installation accessories (Tools)

LEGEND

Al	Aluminium	LSZH-FR+	Stabilized Low Smoke Zero Halogen
AP	Al/Polyester		Flame Retardant compound
APA	Al/Polyester/Al	N	Newton (0,1 kg approx.)
APAS	Al/Polyester/Al/Surline(glue)	n.a n.c.	not applicable - not classified
AP-J	Al/Polyester - "J folded"	PE	Polyethylene
APS	Al/Polyester/Surline(glue)	PEG	Gas Injected Physical Foam PE
AWG	American Wire Gauge	Pet	Polyester
CCA	Copper Clad Aluminium	PJ	Petrol Jelly filling compound
CCS	Copper Clad Steel	PVC	Poly-Vinyl-Cloride
Cu	Copper	PVC II	Non-Migrating PVC Compound
Cu/Pet	Copper/Polyester	RG11	size 1,63 / 7,20 mm
CuSn	Tinned Copper	RG59EU	size 0,80 / 3,50 mm
FeCu	Copper Clad Steel (CCS)	RG6	size 1,00 / 4,60 mm
FeZn	Zinc Plated Steel	RG6EU	size 1,00 / 4,80 mm
LSZH	Low Smoke Zero Halogen compound	RG6+	size 1,13 / 4,80 mm
LSZH-FR	Low Smoke Zero Halogen	SA	Screening Attenuation
	Flame Retardant compound	TI	Tranfer Impedance (Zt)

LIMIT OF RESPONSIBILITY

Every care has been taken to ensure that the information contained in this publication is correct. No legal responsibility can be accepted for any inaccuracy. The company reserves the right to alter or modify the information contained herein at any time. The coaxial cables illustrated in this catalogue must be used solely for the purposes for which they were expressly designed, which is the reception and distribution of audio, video and data signals. Any other use is deemed to be inappropriate and our approval should be sought for alternative applications. The manufacturer and the seller decline all responsibility for any problems that may occur due to improper, incorrect and unreasonable use.

ITALIANA CONDUTTORI Srl

Viale Zanotti, 90 - 27027 Gropello Cairoli (Pavia) Italy Tel. +39 0382 815150 - Fax +39 0382 814 970

www.cavel.com cavel@cavel.it